Using Post-Plant Nematicide Applications for Nematode Suppression
The spray applications with Movento were made on October 19, 2016. Watering scheduled as shown in the overview. On October 28 one of the grape plants was removed. Active leaves, and fibrous roots were excised, and provided after grinding to the Daane laboratory for analysis. Nematode population densities were determined at treatment time (October 18) and post-treatment (January 25). Soil samples were taken from 0-1 and 1-2 ft depth. After extraction, nematodes were identified and counted.
Nematode counts were analyzed before treatments (Fig. 1). Telone II fumigation reduced nematode numbers effectively. At treatment time, nematode numbers were similar among spirotetramat (Movento) treatments although some variability was measured. In parametric analysis, the “watering regiment Movento” treatment combinations analyzed as two-factor factorial design had no significant main effects or interactive effects (data not shown). Soil samples are currently processed to determine nematode numbers post-treatment.
The chemical detection of spirotetramat and its break-down products is initiated. It was possible to detect spirotetramat in the leaf tissues (Fig. 2). No spirotetramat was detected in the plants from the drench-treated plots. There were traces in the Telone-treated plots and in the non-treated controls. These appeared as false positives, and each case was only based on the detection of spirotetramat in one of the five replicate plants of the respective treatments. No spirotetramat was found in roots (data not shown).
The spirotetramat enol was found in leaves and roots from plants of all treatments (Fig. 3, 4). It is currently unclear how this can be explained. We are examining plants of the same source for the potential presence of some of these chemicals before treatment to assess if these could be carrying a back-ground amount of the chemicals. A careful review of our laboratory procedures did not provide any indication of experimental/technical errors that could have led to this find.
Conclusions and outlook
Progress has been made to establish the laboratory method to detect different forms of spirotetramat and its break-down products. A microplot experiment is in place that will be treated in the spring while allowing for additional destructive sampling of chemical analysis and nematode population density monitoring. Population densities of the nematode will provide additional clues on the efficacy of the treatments.