Determining the Impacts of Dormant Pruning Methods and Nitrogen Fertilization on Pinot Noir Bud Fruitfulness and Yield
This research evaluated the impacts that dormant pruning and nitrogen (N) fertilization have on bud fruitfulness and yield of Pinot noir through two separate experiments over two growing seasons and three dormant periods. The research was conducted to better understand yield limitations and potentially improve yield uniformity across years, as this is an issue for producers in the cool climate of Oregon’s Willamette Valley. Oregon Pinot noir producers use primarily cane rather than spur pruning, as they believe Pinot noir does not have fruitful basal buds and will result in low yields. With the increasing need for mechanization, growers are interested in spur pruning. A ten-year-old vineyard was used for an experiment comparing cane- and spur-pruned vines for dormant bud fruitfulness, fruitfulness in spring, canopy growth, yield, fruit ripeness at harvest, and dormant pruning weights from Feb 2017 to Feb 2019. Results show that basal buds of Pinot noir are fruitful and that cane and spur-pruned vines had similar vine growth, pruning weights, yield, and fruit composition at harvest. However, spur-pruned vines had ~20 g smaller clusters, but there were no differences in berry size. Results of this study show that spur pruning Pinot noir is possible without yield loss or differences in fruit ripeness at harvest.
A separate experiment was conducted to evaluate N fertilization compared to control (no fertilization) in two vineyard blocks in 2017 and 2018. One block (Block 1) was used to evaluate legacy effects of N-fertilization applied two years prior to the data collection year compared to control vines that were not fertilized during that time. A second vineyard block (Block 2) was evaluated for concurrent effects of N-fertilization from Jan 2018 to Feb 2019 on a lower N status block that had been treated with N fertilization (or control) in the 2017 and 2018 crop years. The evaluation of the legacy block (Block 1) found greater numbers of floral primordia and greater primordia size in canes of higher vigor, regardless of N treatment after two years of N supplementation. However, there were no clear differences in vine growth or yield as a result of the prior years of N treatment. The concurrent analysis of N-fertilization on yield potential (Block 2) showed greater floral primordia numbers and size in buds of the N treatment compared to the control. There were also increases in fruitfulness in spring and larger inflorescence size (more flowers per inflorescence) in the N treatment. Véraison leaf blade N correlated with fruitfulness and inflorescence primordia size in Block 2. Yield may have increased in the block with concurrent N application; however, there were no differences in yield by harvest due to commercial thinning practices. These results suggest that modest N-fertilization of vineyards with moderate-low N status may improve yield potential without causing excessive vine growth.