Mitigation of Vineyard Greenhouse Gas Production Using Organic Floor Management

Since April 2013, this study has closely monitored the effects of organic floor fertility strategies (leguminous cover crops, grape pomace composted with manure) in concert with soil carbon storage techniques (biochar and grape pomace compost) Gathered annually are a number of soil, vine, and grape metrics at the University of California Oakville Station. Preliminary effects of these treatments on soil greenhouse gas emissions (nitrous oxide, carbon dioxide, and methane), plant available nitrogen (ammonium and nitrate), soil moisture, vine vigor, and berry quality were discerned. Perhaps the most important results acquired thus far are the monthly trends and magnitude of soil nitrous oxide (N2O) emissions and mineral N availability. Nitrous oxide is a GHG with 300 times the global warming potential of carbon dioxide (CO2), therefore causing significant potential carbon offsets, and limited N fertility was found to severely restrict harvest yields during the decade preceding this investigation. Periods of large N2O production were largely initiated by substantial rain events. When cover cropped or compost supplemented soils were amended with biochar, significant reductions in N2O were observed compared to organically fertilized controls during individual rain periods. However, when organic N fertilizer was not present, biochar-only plots emitted significantly more N2O than conventional controls. There was little difference throughout the year in plant available nitrogen as ammonium (NH4-N) among all treatments, yet a striking contrast in plant available nitrogen as nitrate (NO3-N). Yields have been restored to ca 4+ tons per acre and although yields for the non-conventional treatments were significantly higher in 2013, they did not differ from conventionally fertilized plots in 2014. Thus, this study demonstrates that organic ground fertilizations used in concert with biochar amendments can increase NO3-N provisions while maintaining NH4-N and decreasing vineyard scale N2O emissions.

No significant changes in carbon leaving the soil as CO2 or methane (CH4), were detected on an annual basis. In yearly assessments of total carbon, we were able to determine that both biochar and grape pomace compost did appreciably increase soil carbon content compared to conventional controls upon application. However, we found that the effect of these treatments on annual increases in carbon were negligible but the study will need to continue over years to discern long-term effects.